Nutrient Management

Nutrient management means different things to different people

Personal

- •Nutrition
- •Weight

Urban/Suburban Residents

Healthy, attractive lawns

Golf courses

Parks

Animal Production

- •Healthy animals
- •Feed efficiency
- Net profits

Crop Production

Having the right nutrients available when needed - how much and when

Water Quality Protection

Insuring that waters are:

- "fishable"
- "swimmable"
- "drinkable"

Waterbodies and nutrients

- Nitrogen and phosphorus are the primary nutrients of concern
- N and P essential for life, a water without nutrients is a "dead" water
- Nutrient enrichment "too much of a good thing."

Nutrient Enrichment

Turkey River August 2001

Problems with nutrients

- Nuisance levels of algae and aquatic vegetation, toxic algae
- Low dissolved oxygen levels
- Imbalance of aquatic species
- Increased turbidity sight feeding fish, aesthetics, water safety
- High nitrate levels in drinking water
- Formation of disinfection by-products (e.g., THMs) in drinking water

The national nutrient picture

- East Coast pfisteria issue
- Gulf hypoxia issue
- Drinking water NO₃ and disinfection byproducts
- 2000 National WQ inventory
 - streams 25% impaired by nutrients, agriculture leading cause of impairment
 - lakes and reservoirs 50% impaired by nutrients, agriculture leading cause of impairment
 - overall picture has not changed appreciably over last decade

The national nutrient picture

- National Science and Technology Council assessment of Gulf hypoxia - 1977
- Clinton/Gore Clean Water Action Plan 1998
- Harmful Algal Bloom and Hypoxia Research and Control Act (PL 105-383) 1998
- All led to national strategy to develop nutrient criteria for waters
 - EPA to develop "guidance" values for nutrients for lakes, streams and wetlands, ecoregion based
 - states to adopt water quality standards for nutrients by end of '04

What are state water quality standards?

- Water quality standards define levels of water quality to achieve swimmable, fishable, drinkable waters.
- CWA requires states to adopt standards, EPA must approve
- EPA provides "guidance values" for states to use
 - one size does not fit all
 - states have some flexibility to deviate from guidance values
- EPA can adopt standards for a state if:
 - state fails to adopt standards
 - state-adopted standards are not adequate

Nutrient Water Quality Standards

- EPA has published guidance criteria for states to use in establishing nutrient water quality standards
- Total N, total P, chlorophyll a, and turbidity

Ambient Lake Data for 2000 and 2001 (all data)

Ambient Lake Data for 2000 and 2001 (all data)

Ambient Stream Data for 2000 and 2001 (event and non-event data)

Nutrient Ecoregion 6

Ambient Stream Data for 2000 and 2001 (event and non-event data)

Nutrient Ecoregion 6

Can we significantly reduce the level of nutrients going into our waters?

To do so, we have to start thinking differently

Removal of N and P from wastewater effluent

Manure Management Consider both N and P

Nutrient Standards for Waterbodies - two questions:

- What should the nutrient water quality standards be for Iowa?
- How can Iowa meet those standards?

Iowa does not have a comprehensive, statewide nutrient management strategy that will answer those questions

What we do have is "bits and pieces"

- Erosion control practices
- Agronomic nutrient research and education how much do you need? Message: applying more than you need reduces net profits.
- Nutrient management task force ('91 and '00)
- Research projects (e.g., ADW Research Project)
- Manure management research, MMPs
- Phosphorus index
- Watershed/Section 319 projects with nutrient reduction goals (e.g., Upper Maquoketa)
- 2000 Water Initiative
- GIS-based watershed models

Have we succeeded in reducing nutrients in Iowa waters?

- Due to temporal variability and lack of historic monitoring data, difficult to measure successes.
- Mixed messages, different studies say different things

Keeny/DeLuca Study - 1993

- Comparison of NO₃ levels in Des Moines River, '45 vs. 80's.
- Conclusion: NO₃ and P levels in DM river similar to 55 years ago.
- Problem: Limited historic data

USGS - Eastern Iowa Basins - 1999

- Analyzed 1970 1995 data, 17 sites
- Trend analysis of NH₃, P and NO₃ mixed, some ↑, some ↓, some ⇔. Generally increasing NO₃ trend
- NPS (e.g., agriculture) large part of picture, but point sources cannot be ignored, especially during low flows

Nitrogen Use Research

- General findings
 - the less N applied, the less there will be in the water
 - applying excess nitrogen is money down the drain (less profit)
- Many factors influence NO₃ leaching
 - Application rate and timing
 - Drainage (e.g. tiles)
 - Rainfall
 - In-field management
- Nitrogen application rate and timing still a key variable

Nitrogen applied to corn - ISU

Commercial Nitrogen Sales - IDALS

Commercial Nitrogen Applied for Corn in Iowa
Statewide Averages

Annual Average for Raccoon River

Annual Average for Des Moines River

IDNR - GSB analysis

- Looked at NO₃ flux in Iowa-Cedar basin
- Data sets: '45 '51, post '70s
- Appears to be 2X to 3X increase in NO₃ flux from '40s to present.

Have we succeeded in reducing level of nutrients in Iowa waters?

- No clear picture of NO₃ trends, but my sense is:
 - increase from pre-commercial fertilizer years
 - NO₃ trend is indicative of total N trend
 - level of NO₃ in water function of many variables
- P concentration and flux may be decreasing
 - likely due to reduction in sediment delivery, but no good historical or contemporary sediment transport data
- NPSs responsible for large part of total N load, PSs need to be considered in low-flow conditions

Why haven't we been more successful in reducing nutrient levels in our waters?

ISU Research

- Common to get 50 bu/ac yield increase with 150 lb/ac fertilizer return of about \$125 for investment of \$40.
- 10% yield reduction could result in 50% income reduction
- Improving N management to save 1/3 of the 25 lbs/acre N loss would only save the producer \$2/acre

Specific questions we must answer:

- What are the appropriate nutrient water quality standards for Iowa?
 - EPA "ideal" values or something higher and more realistic?
 - Mean, median, peak, flow weighted average?
- How much N and P and from where?
 - Point sources versus nonpoint sources
 - Agriculture versus urban and wastewater plants
- Can we achieve significant nutrient reduction without significant economic impacts?
- How much "bang for the buck" will we get if we significantly reduce nutrient levels in our waters?

A statewide nutrient strategy

4 elements

- Nutrient budget for the state
 - look at all sources ag, urban, wastewater, rainfall/air deposition, mineralization of organic matter
 - develop GIS-based watershed nutrient model
- Evaluate effectiveness of nutrient control practices - will they get us to where we want to go?
 - in-field nutrient management, including manure management
 - best management practices, e.g, contours, buffers
 - constructed wetlands
 - nutrient removal from domestic/industrial wastewater

A statewide nutrient strategy 4 elements

- Nutrient water quality standards what are reasonable standards?
- Putting it all together
 - scientifically valid picture of nutrients in Iowa
 - realistic expectations
 - recommendations for achieving reductions
 - more of the same (traditional), or
 - new approaches?

